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Abstract

Autoencoders are neural networks widely used in unsupervised learning for di-

mensionality reduction and feature extraction. This paper provides non-asymptotic

guarantees for deep autoencoders within a nonlinear factor model, showing they can

effectively extract latent components with errors that diminish with increasing dimen-

sionality and sample size. The extracted factors converge to the true latent factors, up

to a functional transformation. We extend these results to supervised autoencoders,

supporting their use in factor-augmented prediction and structured matrix completion.

Finally, we illustrate the practical value of autoencoders in macroeconomic forecasting,

asset return prediction, and noise reduction for causal analysis.
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1 Introduction

Autoencoders (AEs) are specialized neural network (NN) models designed to replicate their

inputs at their outputs, playing a fundamental role in unsupervised machine learning. These

models, which gained traction since the 1980s (e.g., LeCun (1987)), have a canonical ar-

chitecture with two main components: an encoder, which compresses the inputs into a

lower-dimensional representation known as features, codes, embeddings, or factors, and a

decoder, which reconstructs the inputs from this compressed form.

We are particularly drawn to AEs due to their close connection with linear factor models

and their capability in conducting nonlinear dimensionality reduction. It is well-documented

(e.g., Baldi and Hornik (1989)) that a single-layer AE with linear activations is equivalent to

Principal Component Analysis (PCA), with the number of neurons in that layer correspond-

ing to the number of components. PCA has been extensively studied, both theoretically and

empirically, demonstrating its effectiveness in estimating linear factor models widely used

in macroeconomics and finance (Stock and Watson, 1999, Bai and Ng, 2002, Chamberlain

and Rothschild, 1983, Connor and Korajczyk, 1986). The success of PCA motivates extend-

ing theoretical guarantees to AEs, particularly for data-generating processes (DGPs) with

nonlinear low-dimensional structures.

Despite the broad application of AEs in machine learning, there has been scant research

providing theoretical justifications. To address this gap, our paper positions AEs as esti-

mators for nonlinear factor models, setting the stage for a comprehensive investigation into

their statistical properties. Within this framework, we explore several pivotal questions to

enhance our understanding of deep and nonlinear AEs. These questions include whether

AEs can effectively identify and extract “commonalities” in the inputs and, if so, what are

the associated statistical error bounds. We also examine how architectural parameters of

AEs, such as depth, width, and the number of neurons, affect AEs’ statistical performance.

Furthermore, we investigate whether AEs can recover hidden low-dimensional embeddings

inherent in nonlinear factor models. Addressing these inquiries from a theoretical standpoint

paves the way for novel applications of this powerful tool in various fields of economics.

Our contributions are threefold. First, on model, we introduce a novel architecture for

AEs, termed Disjoint Output AEs. This architecture retains the standard fully connected

encoder, with its output forming the bottleneck layer, serving as the intermediary between

the encoder and decoder. The bottleneck layer consists of multiple neurons, the number of

which corresponds to the dimensionality of the embeddings, akin to the number of factors
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in a linear factor model. The key innovation lies in the decoder network, which employs

separate networks to map all embeddings to each specific output, creating a sparse-link

alternative to the conventional fully connected decoder. The imposed sparsity in weight

parameters preserves the AE’s capacity to approximate a broad range of nonlinear factor

model DGPs, yielding desirable approximation errors—specifically, the difference between

the nonlinear function and its optimal approximation within the AE class. Additionally,

estimating fewer weight parameters accelerates training and reduces the estimation error,

defined as the difference between this optimal approximation and the estimated AE.

Second, on theory, we establish non-asymptotic guarantees for AE’s convergence rates

in approximating the common components of input data. Our analysis accommodates both

increasing depth of AE architecture and width of any layer—including the embedding di-

mension. We demonstrate that AE’s convergence rate is driven by two key components:

the approximation and estimation errors in recovering latent factors via the encoder, and

the corresponding errors in reconstructing the input through the decoder. The encoder’s

estimation error diminishes with increasing dimensionality, echoing the “blessings of dimen-

sionality” observed in linear factor models. Importantly, as long as the bottleneck layer’s

width remains bounded, the AE maintains an optimal convergence rate even if the true di-

mensionality of the factors in the DGP is exceeded. For approximation error, we analyze two

scenarios: in the first, the encoder is over-parameterized, achieving zero training error but

risking out-of-sample divergence; in the second, the encoder is appropriately parameterized,

achieving convergent approximation errors in both in-sample and out-of-sample settings,

subject to a pervasiveness condition analogous to that in linear factor models.

The second component driving error concerns the approximation and estimation errors

within the decoder, which diminishes as sample size increases. This component resembles the

estimation error in factor loadings in linear regression models, though here the “loadings”

are high-dimensional nonlinear functions. Importantly, we demonstrate that the decoder’s

error achieves the optimal nonparametric regression rate, as if the embeddings were directly

observable. Our theoretical results further extend to the convergence rate of the factors

themselves, which are identifiable up to invertible functional transformations. Consequently,

AEs can recover these latent factors up to an unknown nonlinear transformation, with a

convergence rate consistent with the result described above.

Third, we extend our results to supervised AEs (SAEs), demonstrating their applicability

in factor-augmented regressions and structured matrix completion, thereby broadening the

AE framework’s relevance in economics. We further illustrate the empirical potential of AEs
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and SAEs through three distinct applications: forecasting key macroeconomic indicators

such as industrial production, inflation, unemployment, and non-farm payrolls; predicting

the cross-section of factor returns; and conducting causal analysis with corrupted covariates.

In all three cases, AEs significantly outperform PCA due to their superior ability to extract

nonlinear factors.

Our work contributes to a growing body of research on nonlinear factor models, which,

despite early foundational studies by Etezadi-Amoli and McDonald (1983) and Kenny and

Judd (1984), has faced substantial challenges due to the inherent complexity of these models.

Building on the insights of Griebel and Harbrecht (2014) and Xu (2017), who show that

certain nonlinear factor models could be effectively approximated by low-rank matrices,

further research by Agarwal et al. (2021) and Freeman and Weidner (2023) demonstrate

the robustness of PCA in extracting the common components of data characterized by such

nonlinear structures. More recently, Feng (2023) has extended this line of inquiry to a

broader class of factor models initially proposed by Amemiya and Yalcin (2001), introducing

a local PCA approach inspired by local regression techniques. This approach achieves a

convergence rate consistent with our theoretical results. However, while it is effective at

noise reduction, it falls short of constructing the underlying factors as the locally estimated

components lack integration into a cohesive time series of factors. By contrast, the encoder

of AEs provides a global solution for factor construction, integrating information across the

entire dataset to form cohesive factors. Additionally, AEs are versatile, extending to various

NN architectures that can capture complex data types, including text and images, making

them broadly applicable across diverse domains.

Our paper adds to the growing body of literature on the theoretical properties of deep

neural networks (DNNs). This literature builds on the early work of Barron (1993) and

Chen and White (1999), which establish and refine nonparametric approximation rates for

single-layer sigmoid neural networks. Chen and Shen (1998) provide a general theory on

the convergence rate of sieve extremum estimates for time series data, incorporating single-

layer sigmoid neural networks as a special case. Mei et al. (2018) and Mei et al. (2019)

apply mean field theory to study the behavior of single-layer neural networks with stochastic

gradient descent. Yarotsky (2017) explores the optimal approximation errors in deep ReLU

networks for a class of smooth functions. Building on this, Schmidt-Hieber (2020) and Farrell

et al. (2021) derive the optimal error rate for sparse DNNs, while Kohler and Langer (2021)

demonstrate that fully connected DNNs can also achieve this optimal rate. Additionally,

works by Bauer and Kohler (2019), Nakada and Imaizumi (2020), and Jiao et al. (2023)
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highlight the potential of DNNs to overcome the curse of dimensionality, particularly when

the data exhibits intrinsic low-dimensionality or when the target function has a compositional

structure. Unlike these studies, which focus on supervised learning problems for feedforward

DNNs, our work investigates the theoretical properties of a specific class of DNNs—AEs—in

unsupervised learning settings.

This paper is organized as follows: Section 2 presents the nonlinear factor model and

introduces Disjoint Output AEs. Section 3 presents the main theoretical results on the

statistical properties of these AEs and extends the analysis to SAEs. Section 4 conducts

simulations to validate our theoretical predictions. Section 5 discusses empirical results that

illustrate the practical applications of AEs. The appendix provides additional comparisons

with Kernel PCA and includes detailed mathematical proofs.

Notation: We denote the set of positive integers by N+. Furthermore, we represent

the set that includes both zero and all positive integers, {0} ∪ N+, by N0. For n ∈ N+,

we use [n] to denote the set {1, . . . , n}. For a vector x = (x1, . . . , xd)
⊤, as usual, we define

∥x∥p = (
∑d

i=1 |xi|p)
1
p and ∥x∥∞ = maxi |xi|. Additionally, let Pd

n be the linear span of all

monomials of the form
∏d

k=1 x
rk
k for some r1, . . . , rd ∈ N+, where r1 + · · · + rd = n. For

a matrix A ∈ Rn×m, we use ∥A∥, ∥A∥∞, ∥A∥F and |A| to represent its spectral norm, the

maximum absolute value of its entries, its Frobenius norm, and its determinant if it is a square

matrix, respectively. Given a function f : Rn → Rm, we define ∥f∥∞ = supx∈D ∥f(x)∥∞,

where D represents the domain of f . We say f ∈ Cβ if it has β continuous derivatives

on its domain. Furthermore, we define the norm ∥ · ∥Cβ of the smooth function space Cβ

by ∥f∥Cβ := max
{
∥Dαf∥∞ : ∥α∥1 ≤ β, α ∈ Nd

0

}
. If f is differentiable on its domain, we

express its Jacobian matrix at x as Jf (x). For a set F , we use |F| to indicate the number of

elements within the set. We use the notation xn ≲ yn when there exists a constant C such

that xn ≤ Cyn holds for sufficiently large n. If xn ≲ yn and yn ≲ xn, we write xn ≍ yn for

short. For two random variables X and Y , we write X ≤d Y if Y stochastically dominates

X and X
d
= Y if X has the same distribution as Y . For a sub-Gaussian variable X, its

sub-Gaussian norm is defined as ∥X∥ψ2 = inf {c > 0 : E [exp (X2/c2)] ≤ 2}.

2 Model Setup

We begin by introducing the underlying DGP that will be used to characterize the statistical

properties of AEs.
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2.1 Nonlinear Factor Model

We model the observed data, Xit, for i = 1, 2, . . . , N and t = 1, 2, . . . , T , based on a frame-

work initially proposed by Amemiya and Yalcin (2001):

Xit = X⋆
it + Uit = φ⋆i (F

⋆
t ) + Uit, (1)

where the common component, denoted by X⋆
it, is governed by a potentially nonlinear factor

loading function φ⋆i (·) of a K-dimensional vector of unknown factors, F ⋆
t . The term Uit

represents the noise component. We also use the notation Xt, X
⋆
t , φ

⋆(F ⋆
t ), Ut to denote

N × 1 vectors containing the values for each entry of these variables at time t. Similarly,

X, X⋆, and U represent their N × T matrix versions, and F ⋆ denotes the K × T matrix of

factors.

This model nests the linear factor model as a special case, where φ⋆i (x) = Λ⊤
i x is a linear

function, and Λi is the N × 1 column vector corresponding to the ith row of a K ×N factor

exposure matrix, Λ. Other examples include the polynomial factor model, where φ⋆i (x) is a

multivariate polynomial function of x, as studied by McDonald (1962) and Kenny and Judd

(1984), and the additive nonlinear factor model, where φ⋆i (x) = Λ⊤
i φ(x) for some nonlinear

function φ(·), as examined by Zhu and Lee (1999). This framework also encompasses gen-

eralized linear latent variable models, where φ⋆i (x) = φ(Λ⊤
i x), as explored by Moustaki and

Knott (2000), Skrondal and Rabe-Hesketh (2004), Huber et al. (2004), Chen et al. (2017),

Wei et al. (2021), and Wang (2022). Finally, it includes the generalized factor model, where

φ⋆i (x) = φ(Λi, x), as explored by Agarwal et al. (2021) and Freeman and Weidner (2023).

Subsequently, we make assumptions regarding the bounds on various norms of Ut and

F ⋆
t , as well as smoothness conditions on φ⋆i (·).

Assumption 1 (Boundedness). There exists a constant B > 0 such that max1≤t≤T ∥F ⋆
t ∥∞ ≤

B holds almost surely. Conditional on F ⋆, vec(U)
d
= Σ1/2 vec(Z), where Z ∈ RN×T con-

sists of independent sub-Gaussian random variables with sub-Gaussian norm bounded by σ2
z .

Moreover, the NT ×NT matrix, Σ, is positive semi-definite with bounded spectral norm.

The almost sure bound on the support of Ft may seem stronger than what is typically

assumed in the literature on linear factor models. However, this assumption is common in

nonparametric literature (see, e.g., Chen and White (1999)) and is particularly important for

developing theoretical results on NNs (e.g., Farrell et al. (2021)). In practice, this assumption

is nearly harmless, though it does exclude distributions supported on the entire real line.
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The assumption on Σ rules out strong time-series and cross-sectional dependence among

entries of U . In Lemma 2 of the appendix, we show that this assumption holds if U =

Σ
1/2
1 ZΣ

1/2
2 , where Σ1 and Σ2 are positive semi-definite matrices with bounded spectral norms.

A similar assumption has been adopted by Onatski (2005) and Ahn and Horenstein (2013)

in their analysis of linear factor models.

We then impose a smoothness assumption on φ⋆i (·). As is standard in the nonparametric

literature (see, e.g., Stone (1982)), the smoothness of the true underlying function influences

how accurately it can be approximated by neural nets.

Definition 1 (Hölder Ball). Let β > 0 and Ω be a subset of some Euclidean space, the

Hölder ball of functions Hβ(Ω, B) is defined as

Hβ(Ω, B) =

f : Ω → R, max
α,|α|≤⌊β⌋

sup
x∈Ω

|Dαf(x)|+ max
α:∥α∥1=⌊β⌋

sup
x,x′∈Ω
x ̸=x′

|Dαf(x)−Dαf (x′)|
∥x− x′∥β−⌊β⌋ ≤ B

 ,

where ⌊β⌋ represents the largest integer strictly smaller than β.

Assumption 2 (Smoothness). There exist β ∈ N+ and an open set Ω containing [−B,B]K,

such that φ⋆i (·) lies in the Hölder ball Hβ(Ω, B), where B is given by Assumption 1.

If the factors F ⋆
t were observable, estimating the unknown function φ⋆i (·) would reduce

to a standard (supervised) nonparametric regression problem, which could be solved using

methods such as sieve estimators. However, our problem is more involved due to its unsu-

pervised and nonparametric nature, requiring the development of a distinct estimator. We

now proceed to construct AEs, which will serve as our estimator for nonlinear factor models.

2.2 Autoencoders and Their Architecture

To lay the foundation for constructing AEs, we first formally build the necessary components

of NNs. We begin with the rectified linear unit (ReLU) activation function, defined as

σ(x) = max(x, 0). Given v = (v1, . . . , vr) ∈ Rr, we define the shifted activation function

σv : Rr → Rr as follows:1

σv


y1
...

yr

 =


σ (y1 − v1)

...

σ (yr − vr)

 .

1When possible, we omit the brackets in the shifted activation function σvi(·).
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H1

H2

Input Hidden Ouput

Figure 1: Illustration of Neural Network

Note: This graph illustrates a fully connected neural network with architecture parameters d = 1, w = 2,

and n = (4, 2, 2). The input and output neurons are shown in red, while the neurons in the hidden layer are

displayed in blue.

An NN’s architecture, denoted as (d, w, n), consists of a positive integer d, which represents

the number of hidden layers (depth), and a width vector n = (n0, . . . , nd+1) ∈ Nd+2, where

ni ≤ w for i = 1, . . . , d. Here n0 and nd+1 correspond to the input and output dimensions,

respectively. An NN with architecture (d, w, n) can be expressed as a function of the form:

f : Rn0 → Rnd+1 , x→ f(x) = WdσvdWd−1σvd−1
· · ·W1σv1W0x, (2)

where Wi denotes a ni+1×ni weight matrix, σvi is the shifted activation function introduced

earlier, with vi ∈ Rni representing a shift vector. For instance, Figure 1 illustrates an NN with

architecture (1, 2, (4, 2, 2)). We use this notation to denote a fully connected NN; however,

if certain connections are omitted, we simply set the corresponding weights in Wi’s to zero.

We use the term DNNs to refer to NNs with a potentially diverging depth.

We adopt a setup similar to Schmidt-Hieber (2020), where the parameters of a DNN

are bounded to ensure that the network remains well-behaved. Specifically, we define the

function space of DNNs as:2

Fnd+1
n0

(d, w,C,B) :=

{
f of the form (2) : max

j=0,...,d
∥Wj∥∞ ∨ |vj|∞ ≤ C, ∥f∥∞ ≤ B

}
,

where B is specified by Assumption 1. The first condition within the brackets ensures that

all weight matrices and shift vectors are bounded by C. In Schmidt-Hieber (2020), C is set

to a fixed constant (1), whereas in our study, we let C = T 5β+5, allowing it to scale with the

2For simplicity, we omit the dependence of Fnd+1
n0 on the width vector n here.
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sample size. This adjustment permits the DNNs to achieve a smaller approximation error

without adversely impacting the estimation error.

The second condition enforces a uniform bound on the NN f , regardless of the sample size

or the scale of its architecture parameters. Effectively, this means we consider only DNNs

with bounded outputs when used as estimators. Notably, this aligns with the boundedness

assumption on the true function φ⋆i (·) in the DGP, as implied from Assumption 2. Practically,

this constraint serves not as a stringent restriction but rather as a mild form of regularization.

Having introduced the basic architecture of a DNN, we are now ready to define a special

class of DNNs known as AEs. The primary objective of an AE is to reconstruct the input

from their compressed form, thereby facilitating dimensionality reduction.

...
...

DNN ρ(·) DNN φ(·)

Encoder Decoder

Figure 2: Illustration of Canonical Autoencoder Architecture

Note: This graph illustrates a canonical autoencoder architecture, where the input layer first processes the

data, passing it through a sequence of hidden layers structured as a DNN that compresses the information

down to a central bottleneck layer—the narrowest point in the architecture. This bottleneck layer, containing

three neurons shown in blue, captures the core features in a reduced-dimensional form. The network then

reconstructs the input as closely as possible through additional DNN layers, producing an output layer with

the same dimension as the input.

Specifically, given an input x, an AE first applies an “encoder,” a DNN denoted by ρ(·),
which maps the input into a low-dimensional “bottleneck,” represented by a small number

of neurons in a hidden layer—this being the narrowest layer of the AE. The encoded data

at the bottleneck layer is then passed through a second DNN, called the “decoder,” denoted

by φ(·), which reconstructs an approximation of the original input x at the output. Figure 2

illustrates the canonical architecture of a vanilla AE.

Unlike a DNN, which is often used for supervised learning to predict another target

variable, AEs have output neurons of the same size as their input, aiming to reconstruct the
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input itself. This makes AEs an unsupervised learning tool, as no other variables besides

the input are involved.

In this paper, we shift our focus from the canonical form of AE to what we refer to

as a disjoint output AE, with its architecture depicted in Figure 3. This specialized class

of AEs retains the same encoder design as the fully connected AE but features a unique

decoder structure: a separate DNN for each output neuron, mapping from the bottleneck to

reconstruct the corresponding output.

More specifically, the architecture of the disjoint output AE consists of a single DNN

as the encoder and multiple separate DNNs collectively as the decoder. The encoder,

ρ(·) ∈ FK1
N (d1, w1, T

5β+5, B), produces a K1-dimensional bottleneck layer. For each of the N

outputs, a separate DNN is employed, where each φi(·) ∈ F1
K1
(d2, w2, T

5β+5, B) is specific to

the ith output neuron for i ∈ [N ]. As a result, for an input x, the ith-output of the disjoint

output AE is given by φi ◦ ρ(x). Formally, we define the disjoint output AE function class

as follows:

FK1
AE :=

{
(φ1, . . . , φN) ◦ ρ : ρ ∈ FK1

N (d1, w1, T
5β+5, B), φi ∈ F1

K1
(d2, w2, T

5β+5, B), i ∈ [N ]
}
.

(3)

Consider the canonical form of an AE, illustrated in Figure 2, φ ◦ ρ(x), where the en-

coder is ρ(·) ∈ FK1
N (d1, w1, T

5β+5, B), and the decoder φ(·) ∈ FN
K1
(d2, Nw2, T

5β+5, B) is fully

connected. The total number of weight parameters in the decoder is of order O((Nw2)
2d2).

In contrast, the decoder (φ1, . . . , φN) of the disjoint output AE in FK1
AE contains at most

N × O((w2)
2d2) parameters. This disjoint output architecture introduces sparsity in the

decoder’s weight parameters, reducing the number of weights by a factor of N , compared

to the canonical AE. While it is possible to encourage sparsity on a fully connected decoder

through ℓ1-regularization during training, the disjoint AE naturally achieves sparsity without

the need for such regularization.

As we will explain later, this disjoint output architecture delivers strong approximation

performance, being versatile enough to capture the nonlinear, low-dimensional structure in

the inputs, even with a substantial reduction in the number of weights parameters. At the

same time, it achieves desirable statistical estimation properties by reducing the number of

neurons, thereby effectively controlling model complexity.

The final step in constructing an AE is specifying its loss function. The AE’s ability

to perform dimensionality reduction comes from training it to reconstruct the input data
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...
...

...
DNN ρ(·)

DNN φ1(·)

DNN φ2(·)

DNN φ3(·)

DNN φN−1(·)

DNN φN(·)

Encoder Decoder

Figure 3: Illustration of Disjoint Output Autoencoder

Note: This graph illustrates a disjoint output autoencoder architecture. The encoder retains the same

structure as the canonical autoencoder’s encoder shown in Figure 2. The decoder, however, consists of

multiple separate DNNs, each mapping the bottleneck layer to a single output.

accurately. This is achieved by minimizing the following loss function:3

(φ̂1, . . . , φ̂N) ◦ ρ̂ = argmin
(φ1,...,φN )◦ρ∈FK1

AE

T∑
t=1

N∑
i=1

(φi(ρ(Xt))−Xit)
2 . (4)

This optimization problem is highly non-convex, necessitating the use of more sophisti-

cated algorithms for solving it. We will explore the optimization perspective in greater detail

in the simulation and empirical analysis sections.

Before training an AE, it is necessary to select a key hyperparameter: the number of

neurons in the bottleneck layer, K1. The overall network architecture must also be designed,

including decisions about its depth and width. These crucial considerations will be discussed

after we present the theoretical analysis, which we turn to now.

3 Main Theoretical Results

In this section, we present a non-asymptotic analysis of the statistical properties of the

disjoint output AEs. Our analysis begins with the reconstructed data, X̂it := φ̂i(ρ̂(Xt)).

3In a recent study, Liu et al. (2024) study the convergence rate of AEs when the common components
reside on a certain manifold. Their DGP differs from ours. Moreover, they assume the common components
are observable and use them to train an AE, which is not feasible in practical applications. Additionally,

they study AEs with fully-connected decoder and achieve a rate of the order N2T− 2
K+2 , which is slower than

ours.
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where ρ̂(·) and φ̂i(·) for 1 ≤ i ≤ N are defined in equation (4).

3.1 Recovery of the Common Components

Naturally, the population counterpart of X̂it is X
⋆
it = φ⋆i (F

⋆
t ) in the DGP, as given in (1).

Consequently, we analyze the difference between these quantities, aggregated across the

entire panel: 1
NT

∑T
t=1

∑N
i=1

(
X̂it −X⋆

it

)2
.

Theorem 1. Consider the AE class FK1
AE with K ≤ K1 ≤ min(w1, w2), d2 ≍ log(T ),

and w2 ≍ T
K

2(2β+K) . Suppose Assumptions 1-2 hold. Then, with probability at least

1− C exp(−cT ), for min(N, T ) large enough, we have:

1

NT

T∑
t=1

N∑
i=1

(
X̂it −X⋆

it

)2
≲

(
T− 2β

2β+K +N−1K1 + T−1 inf
ρ∈FK

N

T∑
t=1

∥ρ(Xt)− F ⋆
t ∥2
)
log4(T ),

where c and C are constants independent of N, T , and FK
N := FK

N (d1, w1, T
5β+5, B).

We first discuss the assumptions. The conditions require that K1 ≥ K, meaning the

number of neurons in the bottleneck layer must be at least as large as the number of factors

specified in the DGP. However, there is some ambiguity regarding the exact number of

factors in a nonlinear factor model, which we will address in greater detail in Section ??.

The requirement K1 ≤ min(w1, w2) ensures that the bottleneck layer is among the narrowest

in the network, allowing for ties. On the decoder side, both d2 and w2 must increase with

the sample size, ensuring that the network remains sufficiently deep and wide. Moreover,

the conditions only necessitate that N and T be greater than a certain constant threshold.

Given this, the non-asymptotic results naturally extend to asymptotic results as N and T

diverge.

As is standard in nonparametric analysis, this result hinges on appropriately selecting

the dimension of the bottleneck layer, K1, and the width of the decoder, w2, based on the

smoothness parameter β and the number of factors K in the true DGP. In practice, these

values are typically unknown, so conservative choices are often made. This approach assumes

that the true functions are smoother than presumed and intentionally uses a relatively large

number of factors—more than what economic theory or economists typically suggest or

believe.

Next, we make a few observations regarding the result on the error bound. There are

three terms on the right-hand side of the inequality. The first term in the error, T− 2β
2β+K ,

matches the minimax rate in nonparametric regression of Xt on F
⋆
t , as if these factors were
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known. For a nonparametric supervised learning task, this rate can be achieved by estimators

other than NNs; examples include spline methods by Speckman (1985) or sieve estimators

by Newey (1997) and Chen and Shen (1998), among others.

The second term, N−1K1, arises from the estimation error associated with the unknown

factors. Intuitively, since there are TK1 unknown values to estimate and NT observed values

in total, the ratio of unknowns per observation results in this rate. Our assumptions permit

the number of neurons in the bottleneck layer to increase, and the result shows that this

error term scales linearly with the number of neurons, impacting the overall convergence

rate at the order of N−1. This implies that selecting more factors than necessary does not

negatively impact the convergence rate, highlighting the model’s robustness to overestimating

the number of factors.

The third term is associated with the error from approximating the unknown factors using

the encoder. An important observation is that the estimation error for the encoder does not

impact the overall convergence rate—only its approximation error is relevant. In light of

this, one can use an over-parameterized encoder such that infρ∈FK
N

∑T
t=1 ∥ρ(Xt)− F ⋆

t ∥2 = 0,

eliminating the approximation error and thereby improving the overall convergence rate

based on in-sample criteria.

However, an over-parameterized encoder may lead to poor expected out-of-sample per-

formance, where both estimation and approximation errors can become substantial.4 A

meaningful approach is to carefully balance these two error sources out-of-sample while de-

signing an effective encoder, even if it results in larger approximation error in-sample. To

achieve this, we need a more explicit characterization of the approximation error, which

necessitates imposing restrictions on the DGPs we consider. Furthermore, we propose a

potentially sparse encoder component to help balance the impact of estimation error and

approximation error on out-of-sample performance.

Assumption 3 (Pervasiveness). There exist a matrix W ⋆ ∈ RK×N and a function ρ⋆ whose

domain is the image of the mapping W ⋆φ⋆, denoted as W ⋆φ⋆([−B,B]K). These satisfy

ρ⋆ ∈ Hβ(W ⋆φ⋆([−B,B]K), B), ∥W ⋆∥∞ ≲ L−1, ∥W ⋆∥0 ≍ L for some diverging positive

integer L, and

4Recent literature indicates that under certain conditions on the data, overfitting can be benign; see, for
example, Bartlett et al. (2019), Tsigler and Bartlett (2024), and Hastie et al. (2022). However, these analyses
are mainly focused on linear settings for supervised learning problems, and a comprehensive theoretical
framework for NNs remains unavailable. We leave the investigation of benign overfitting in unsupervised
learning problems for future research.
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sup
x∈[−B,B]K

∥ρ⋆(W ⋆φ⋆(x))− x∥2 ≲ L−1. (5)

This assumption generalizes the pervasiveness assumption commonly used in linear factor

models, as seen in Bai (2003). It allows for an approximate representation of the underlying

factors using the input data. The parameter L quantifies the pervasiveness of the factors,

representing the number of individuals in X who have a non-trivial exposure to these factors.

Specifically, consider the special case of a linear factor model, where φ⋆(x) = Λx with

bounded loadings, ∥Λ∥∞ ≲ 1. If ∥Λ∥0 ≍ L —indicating that each factor influences approx-

imately L variables—we can set W ⋆ = L−1Λ⊤ and define ρ⋆(x) = L(Λ⊤Λ)−1x. With these

choices, Assumption 3 is satisfied.

Intuitively, although the sparsity assumption weakens the strength of the factors, leading

to a greater approximation error, it can also reduce the estimation error. This trade-off

has the potential to enhance out-of-sample performance, as we will illustrate in the next

theorem.

Theorem 2. Suppose that Assumptions 1-3 hold, with K ≤ K1 ≤ min(w1, w2), d1 ≍ d2 ≍
log(T ), and w1 ≍ w2 ≍ T

K
2(2β+K) . Additionally, we assume total number of weight parameters

in the encoder is asymptotically bounded by L + T
K

2β+K log T , and that logmax(N, T ) =

o(L). Then, with probability at least 1 − C exp(−cT ) − C exp(−cL), as min(N, T ) becomes

sufficiently large, we have:

1

NT

T∑
t=1

N∑
i=1

(
X̂it − φ⋆i (F

⋆
t )
)2

≲ (N−1K1 + T− 2β
2β+K + L−1) log4(T ),

where c and C are constants independent of N and T . Moreover, when the data is i.i.d., for

a new data point XT+1, we have

1

N

N∑
i=1

E
(
φ̂i ◦ ρ̂(XT+1)−X⋆

T+1)
)2

≲ (N−1K1 + T− 2β
2β+K + L−1 + T−1L) log4(NT ).

The assumptions in Theorem 2 impose additional restrictions on the encoder compared to

those in Theorem 1. Specifically, the depth and width of the encoder are of the same order as

those of the decoder, both increasing with the sample size and influenced by the smoothness

and number of factors in the DGP. Furthermore, the encoder network cannot contain an

excessive number of weight parameters. These constraints simplify the conclusion of Theorem

1, where the approximation error of the decoder is of order L−1, and the estimation error
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remains negligible for in-sample loss.

Consider the special case of a linear factor model: when φ⋆(·) is a linear function, β = ∞,

K is finite, and the pervasiveness assumption holds with L = N . We analyze a single-layer

AE with a linear activation function. In this case, the total number of parameters in the

encoder, K1N , satisfies the imposed assumptions. Consequently, the overall convergence

rate simplifies to N−1+T−1 (up to logarithmic terms), matching the rate established by Bai

(2003).

The first result indicates that increased sparsity always hurts in-sample performance by

raising the approximation error, which is on the order of L−1. However, it can improve out-

of-sample performance by reducing the estimation error. The second result of Theorem 2

shows that, for i.i.d. data, the expected out-of-sample loss includes both the aforementioned

errors in our in-sample result and an additional term, T−1L, arising from the estimation error

in the encoder. The optimal rate is achieved when L ≍ T 1/2, resulting in an out-of-sample

error that converges at the rate (N−1K1 + T− 2β
2β+K + T−1/2) log4(NT ).

That said, implementing ℓ0-regularization to achieve sparsity is challenging for NNs, as

noted in previous work (e.g., Schmidt-Hieber (2020) and Farrell et al. (2021)). Consequently,

while achieving the desirable rate of T−1/2 is theoretically possible, it may not be feasible in

practical applications.

3.2 Recovery of the Factors

In this section, we provide the theoretical justification for the potential of AEs to recover

underlying factors in a nonlinear DGP. An important motivation for using AEs stems from

dimensionality reduction, which aims to extract a lower-dimensional set of features that

effectively capture the underlying structure of the data. By reducing the dimensionality, we

can highlight the most informative aspects of the data, making patterns more interpretable

and facilitating downstream tasks such as clustering, visualization, and forecasting.

We begin by noting that for any injective mapping µ : RK → RK , the DGP in equation

(1) can be equivalently expressed as

Xit = φ⋆i ◦ µ−1 ◦ µ(F ⋆
t ) + Uit.

This formulation implies that µ(F ⋆
t ) can also serve as valid factors, meaning that the original

factors F ⋆
t are only identified up to a nonlinear invertible transformation. This ambiguity

is similar to the linear case, where factors can only be identified up to an invertible matrix
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transformation.

The next theorem presents the convergence rate on factor recovery:

Theorem 3. Under the same conditions as in Theorem 2, there exists a function µ : RK1 →
RK such that, with probability at least 1−C exp(−cT )−C exp(−cL), for N and T sufficiently

large,

1

T

T∑
t=1

∥µ(F̂t)− F ⋆
t ∥2 ≲ (L−1K1 +NL−1T− 2β

2β+K +NL−2) log4(T ).

The result indicates that when the factors are strong, meaning L = N , the convergence

rate aligns with that in Theorem 2, and the estimator achieves consistency. However, if the

factors are extremely weak—affecting only a small number of variables in X, such as when

L ≍ 1—the right-hand side fails to converge to zero, and consistent estimation of the factors

may not even be possible.

It is insightful to compare our result with that of Bai and Ng (2023), which examines

the convergence of factor estimates using PCA when the true factors are weak. Using our

notation, their result suggests an error rate of L−1 + (NL−1T−1)2 in the linear case. In

contrast, our rate, L−1 + (NL−1T−1) +NL−2, is not sharp due to the challenges associated

with analyzing the outputs of a specific hidden layer in a DNN.

Importantly, our result does not require the number of neurons in the bottleneck layer to

match the number of factors in the DGP. Instead, it only assumes the existence of a DGP

specified in (1), where the number of factors K is less than or equal to our chosen K1.

Identifying the number of factors is a critical problem in (linear) factor analysis. However,

determining the true number of factors in nonlinear models is significantly more challenging

because of the inherent ambiguity, even at the population level.

For context, consider a linear factor model given by Xt = ΛF ⋆
t + Ut, where F

⋆
t ∈ RK .

Under the conditions that the minimal eigenvalues of N−1Λ⊤Λ and Cov(F ⋆
t ) are asymptot-

ically bounded from below, and that the eigenvalues of Cov(Ut) are bounded from above,

the number of factors K can be readily identified, as demonstrated by Chamberlain and

Rothschild (1983). Bai and Ng (2002) also provide a consistent procedure for recovering K.

In nonlinear factor models, however, the notion of the number of factors becomes am-

biguous. According to Theorem 2 from Schmidt-Hieber (2021), which extends the Kol-

mogorov–Arnold representation theorem, any nonlinear factor model can be reduced to a

single-factor form. Specifically, there exists a function ψ : [−B,B]K → R, such that for any

function φ⋆i : [−B,B]K → R, a corresponding function φ̃⋆i : R → R exists, satisfying
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φ⋆i (x1, . . . , xK) = φ̃⋆i

(
3

K∑
j=1

3−jψ(xj)

)
.

This implies that the original multi-factor model can be reconstructed using a single factor,

denoted as F̃t ∈ R, where F̃t is defined by 3
∑K

j=1 3
−jψ(F ⋆

jt). Consequently, the function

φ⋆i (F
⋆
t ) can be rewritten as φ̃⋆i (F̃t). Although this representation reduces the number of

factors, there are, to the best of our knowledge, no existing results concerning the smoothness

properties of φ⋆(·) following this transformation. It is likely that the function becomes less

smooth, as otherwise, this would provide a method to break the minimax rate. Consequently,

we cannot use this result to justify always adopting a single neuron in the bottleneck layer,

since our approach relies on the smoothness of the nonlinear functions.

On the other hand, it may be possible in certain cases to benefit from expressing the

original K-factor model in a way that introduces more factors but results in a smoother

φ⋆(·). For instance, consider a single factor model defined as φ⋆i (F
⋆
t ) = ΛiF

⋆
t +ψ(F ⋆

t ), where

ψ(·) is a β-smooth function. By treating ψ(F ⋆
t ) as an additional factor, the model becomes

a two-factor linear model with an effectively infinite smoothness. This modification enables

a convergence rate of N−1 + T−1, which is faster than the rate N−1 + T− 2β
2β+1 achievable by

fitting a single-factor nonlinear model.

Given these considerations, the conventional notion of the number of factors in a nonlin-

ear factor model becomes ambiguous and may need to be defined alongside the smoothness of

the factor loading functions. In practice, we treat it as one of the hyperparameters in the ar-

chitecture of AEs, determining it through a model selection procedure. This approach makes

intuitive sense and aligns with common practice, though providing a formal justification is

left for future work.

3.3 Extensions and Applications

In this section, we delve into two extensions of AEs that pave the way for a wider range of

applications, enhancing their flexibility and utility.

3.3.1 Factor-Augmented Prediction

When dealing with large datasets, we often encounter scenarios where we not only wish

to reconstruct or compress the original data but also make accurate predictions for related

outcomes. Standard AEs excel at capturing latent structures in data through unsupervised

learning, but they do not directly incorporate information that could enhance predictive
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performance for external targets. This is where supervised extensions of AEs come into

play. By integrating predictive tasks into the AE framework, we can leverage shared latent

structures to improve both reconstruction and prediction, making the model more versatile

and powerful for applications where joint modeling of input and output data is beneficial.

Consider the scenario where we also observe a large panel Yt ∈ RM that we wish to

predict, in addition to reconstructing Xt. We assume that Yt+1 depends on the same latent

factors, F ⋆
t , modeled as:

Yi,t+1 = ϕ⋆i (F
⋆
t ) + Vi,t+1, for t = 1, 2, . . . , T. (6)

To train this model, one approach is to perform a nonparametric regression of Yi,t+1 on

the factors extracted from AEs pre-trained solely with Xt. Alternatively, a more cohesive

method involves jointly fitting Xt and Yt+1 while training the AE. This strategy originates

from Le et al. (2018), who introduced a supervised autoencoder (SAE) architecture. In this

setting, Xt remains the input, and the model is trained to simultaneously construct Xt and

predict Yt+1, leveraging the shared latent structure. Figure 4 presents the architecture of the

SAE.

This SAE approach differs from factor-augmented regressions (as in Bernanke and Boivin

(2003)) in two key aspects. First, the SAE framework is nonparametric, enabling flexible and

complex nonlinear relationships between the target and the factors. Second, the high dimen-

sionality of the target in SAEs imposes meaningful supervision on the factor construction

process, enhancing the model’s predictive power. In contrast, traditional factor-augmented

regressions typically use low-dimensional targets, rely on linear DGPs, and construct factors

without incorporating information from the target.

Suppose we observe the sequences Xt and Yt+1, for t = 1, 2, . . . , T − 1, and our goal is to

predict YT+1. To achieve this, we first train an SAE using the following loss function:

(φ̂1, . . . , φ̂N , ϕ̂1, . . . , ϕ̂M) ◦ ρ̂

= argmin
(φ1,...,φN ,ϕ1,...,ϕM )◦ρ∈FK1

SAE

T−1∑
t=1

(
N∑
i=1

(φi(ρ(Xt))−Xit)
2 +

M∑
j=1

(ϕj(ρ(Xt))− Yj,t+1)
2

)
. (7)

The supervised AE function class FK1
SAE is defined as:

FK1
SAE :=

{
(φ1, . . . , φN , ϕ1, . . . , ϕM) ◦ ρ : ρ ∈ FK1

N (d1, w1, T
5β+5, B),
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DNN ρ(·)

DNN φ1(·)

DNN φ2(·)

DNN φ3(·)

DNN φN(·)

DNN ϕ1(·)

DNN ϕ2(·)

DNN ϕM(·)

Figure 4: Illustration of Disjoint Output Supervised Autoencoder

Note: This graph illustrates a disjoint output supervised autoencoder architecture. The encoder retains the

same structure as the canonical autoencoder’s encoder shown in Figure 2. The decoder, however, consists of

multiple separate DNNs, each responsible for mapping the bottleneck layer to a single output. The portion

of the output highlighted in red is aimed at reconstructing the input, using the same architecture as shown

in Figure 3. The other portion, marked in green, is designed to predict additional target variables, while

supervising the factor construction process.
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φi ∈ F1
K1
(d2, w2, T

5β+5, B), i ∈ [N ], ϕj ∈ F1
K1
(d2, w2, T

5β+5, B), j ∈ [M ]
}
.

The predictor for Yj,T+1, denoted by Ŷj,T+1, is given by ϕ̂j(ρ̂(XT )). We then establish the

following corollary.

Corollary 1. Assume ϕ⋆i ∈ Hβ(Ω, B) for i = 1, . . . ,M . In addition, we assume that con-

ditional on F ⋆, (U⊤
t , V

⊤
t+1)

⊤ ∈ RN+M is i.i.d. and takes the form Σ1/2Zt, where Zt ∈ RN+M

consists of independent sub-Gaussian random variables with sub-Gaussian norm bounded by

σ2
z and Σ ∈ RN+M is positive semi-definite with bounded spectral norm. Under the same

conditions as in Theorem 2, as min(N +M,T ) becomes sufficiently large, we have:

1

N +M

(
N∑
i=1

E
(
X̂i,T −X⋆

i,T

)2
+

M∑
j=1

E
(
Ŷj,T+1 − ϕ⋆j(F

⋆
T )
)2)

≲ ((N +M)−1K1 + T− 2β
2β+K + L−1 + T−1L) log4((N +M)T ). (8)

Consequently, when N ≲M , we obtain:

1

M

M∑
j=1

E
(
Ŷj,T+1 − ϕ⋆j(F

⋆
T ))
)2

≲ (M−1K1 + T− 2β
2β+K + L−1 + T−1L) log4(NT ). (9)

This corollary suggests that when the dimension ofX has a small or equal order compared

to the dimension of Y , the prediction error for ŶT+1 vanishes as the sample size increases,

ensuring that the model effectively leverages the information from Y for accurate predictions.

However, ifM is much smaller than N , the influence of Yt in the training process diminishes,

and the prediction performance for ŶT+1 may not be guaranteed.

3.3.2 Matrix Completion

AEs provide a powerful framework for tackling problems involving nonlinear matrix comple-

tion and missing data. In many real-world applications, such as recommendation systems,

financial time series, or large-scale survey data, we encounter datasets that are both high-

dimensional and partially observed, sometimes with missing values scattered throughout.

Traditional matrix completion methods, which rely on linear assumptions, may struggle to

capture the complex, nonlinear relationships inherent in the data.

AEs offer a natural solution to this challenge by learning a compact, latent representation

of the observed data that can encode nonlinear structures effectively. By training the AE to
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reconstruct the original matrix from its latent representation, the model can infer and fill in

missing entries in a way that captures intricate patterns. This capability is crucial not only

for matrix completion but also for broader applications, such as causal inference.

In the estimation of causal effects within a panel setting, counterfactual outcomes—

representing what would have occurred under alternative treatment conditions—can be re-

garded as missing data. AEs can assist in this context by imputing these unobserved coun-

terfactuals, offering a novel and effective approach to estimating causal relationships (see,

e.g., Athey et al. (2017), Bai and Ng (2021)). Importantly, missing data in these scenarios

are often not random. In many instances, the data can be structured so that all missing en-

tries are concentrated within a sub-block of a matrix. Therefore, we also explore approaches

for addressing and imputing this type of structured missing data.

Specifically, we first consider a scenario with random missing data, where we observe an

incomplete version of the matrix X, denoted by X̃, which we assume follows the DGP:

X̃it =

0, with probability 1− πi,

Xit, with probability πi,
(10)

where X follows the nonlinear factor model described in (1), and πi ∈ (0, 1) represents the

probability of observing an entry for the ith variable. This probabilistic framework captures

scenarios where the data is missing at random and the degree of missingness is heterogeneous.

Using X̃t to train an AE, we derive the following result regarding the output X̂t:

Corollary 2. Assume min1≤i≤N πi is lower bounded by some positive constant ε, Uit are in-

dependent of each other, and X̃it is missing at random, satisfying (10). Under the conditions

specified in Theorem 1, with probability at least 1−C exp(−cTK/(2β+K)), for sufficiently large

min(N, T ), we have:

1

NT

T∑
t=1

N∑
i=1

(
X̂it/π̂i −X⋆

it

)2
≲

(
T− 2β

2β+K +N−1K1 + T−1 inf
ρ∈FK

N

T∑
t=1

∥ρ(X̃t)− F ⋆
t ∥2
)
log4(T ),

(11)

where c and C are constants independent of N and T and π̂i = max(ε, T−1
∑T

t=1 1{X̃i,t ̸=0}).

The theorem indicates that consistent recovery of the expected values of the missing

entries is achievable under the Frobenius norm. Given that matrix completion is primarily

an in-sample exercise, utilizing an over-parameterized encoder can be beneficial for attaining
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a desirable error rate, as discussed previously.

Next, we consider the scenario of structured missing data, for which we employ SAEs.

We assume that Xt = (X
(1)
t , X

(2)
t ) follows the nonlinear factor model described in (1), where

X
(1)
t ∈ RN1 , X

(2)
t ∈ RN2 , and N1 + N2 = N . We assume that X

(1)
t is fully observed across

all time periods, while X
(2)
t follows a structured missing pattern such that there exists a

non-random T0 > 0 where X
(2)
t is missing for t > T0.

The matrix X illustrates the separation between observed and missing data segments as

follows:

X =



X
(1)
1,1 · · · · · · X

(1)
1,T0

X
(1)
1,T0+1 · · · · · · X

(1)
1,T

...
...

...
...

...
...

...
...

X
(1)
N1,1

· · · · · · X
(1)
N1,T0

X
(1)
N1,T0+1 · · · · · · X

(1)
N1,T

X
(2)
1,1 · · · · · · X

(2)
1,T0

∗ · · · · · · ∗
...

...
...

...
...

...
...

...

X
(2)
N2,1

· · · · · · X
(2)
N2,T0

∗ · · · · · · ∗


. (12)

The economic context behind this missing data problem is to estimate the average treatment

effect for the treated group. In this setup, X(1) represents the control group outcomes, while

X(2) corresponds to the treated group that undergoes an irreversible treatment starting at

time T0 + 1. The objective is to assess how the treatment impacts the treated units and

periods by imputing the potential outcomes for X(2) from T0 + 1 to T , and comparing them

with the actual observed outcomes. This analysis assumes that potential outcomes at each

point depend only on the contemporaneous treatment status of each unit and do not rely on

past treatments or the treatments of other units.

As discussed by Athey et al. (2017), this missing data pattern encompasses two significant

special cases in the causal inference literature. The first is the unconfoundedness literature,

such as Imbens and Rubin (2015), which typically focuses on scenarios involving a single

treated period. The second is the synthetic control literature, including Abadie et al. (2010)

and Abadie (2021), which centers on settings with a single treated unit.

To impute these missing values, we train an SAE using X
(1)
t as the input and Xt as

the output, with the portion corresponding to X
(2)
t serving as the supervised target. This

approach effectively transforms the problem into an SAE task, where the model leverages the

“in-sample” data available up to T0 to learn a low-dimensional structure that helps predict

X
(2)
t for t > T0.

The following corollary becomes a straightforward application of Corollary 1.
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Corollary 3. Under the same conditions as in Theorem 2, as min(N, T0) becomes sufficiently

large, and N1 ≲ N2, we have:

1

NT

T∑
t=1

(
N1∑
i=1

E
(
X̂

(1)
i,t −X

(1),⋆
i,t

)2
+

N2∑
i=1

E
(
X̂

(2)
i,t −X

(2),⋆
i,t

)2)
≲(N−1

1 K1 + T
− 2β

2β+K

0 + L−1 + T−1
0 L) log4(NT ).

and

1

N2(T − T0)

T∑
t=T0+1

N2∑
i=1

E
(
X̂

(2)
i,t −X

(2),⋆
i,t

)2
≲ (N−1

1 K1 + T
− 2β

2β+K

0 + L−1 + T−1
0 L) log4(NT ).

In the special linear case, the best achievable rate given by Corollary 1 is N−1
1 + T

−1/2
0

when L = T
1/2
0 . Bai and Ng (2021) obtain a stronger result of N−1

1 +T−1
0 , assuming that the

factors are pervasive (i.e., L = N). Athey et al. (2017)’s result suggests a convergence rate

T−1 +N−1/2, provided that at least a constant portion of periods for each unit is observed

and the matrix X has a low rank. Their rate applies to the entire matrix, not just the

missing portion, but is comparable to our rate when the missing portion is of the same order

as the complete data.

4 Monte Carlo Simulations

In this section, we conduct simulation experiments to validate our theoretical predictions

and examine practical considerations in the design and training of AEs and SAEs. This

analysis bridges theoretical insights with empirical applications, exploring the strengths and

limitations of these methods in finite sample settings.

4.1 Simulation Setup

We begin by introducing the DGPs used in our simulations. Specifically, we consider four

distinct DGPs by (1), comprising one linear factor model and three nonlinear factor models.

The baseline model is defined by φ⋆i (x) = CΛ⊤
i x, representing a traditional linear factor

structure. The first nonlinear model we consider is an example of the generalized linear

latent factor model, specified as φ⋆i (x) = C exp(Λ⊤
i x). This model introduces exponential

transformations to the baseline, adding nonlinearity and challenging methods that rely on

linearity. The next model completely breaks the linear structure and serves as an example
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of a generalized nonlinear factor model, expressed as φ⋆i (x) = C exp(−∥Λi − x∥2). This

model does not have an inherent linear low-dimensional structure, posing challenges for

methods that might benefit from it. The final model is a polynomial factor model, given by

φ⋆i (x) = C1Λ
⊤
1ix+ C2x

⊤Λ2ix, blending linear interactions with higher-order dependencies.

For each of the 100 Monte Carlo repetitions, we use a five-factor model by setting K = 5

and defining F ⋆
t ∈ R5, where each element of F ⋆

t follows a uniform distribution U(−2, 2). The

elements of Λi,Λ1i,Λ2i are i.i.d. following a uniform distribution U(−1, 1). The noise Ut is

normally distributed, N (0, IN). Calibration of C, C1, and C2 ensures that the unconditional

variance of φ⋆i (F
⋆
t ) for each model is normalized to 1, and that each term contributes equally

to the variance for the polynomial factor model.

Throughout the simulations, we benchmark performance against PCA. While PCA is

traditionally associated with linear factor analysis, recent research has demonstrated its

effectiveness in approximating certain nonlinear models.5 For PCA, we report results using

the number of factors ranging from 1 to 19 in increments of two to illustrate its impact on

PCA performance.

Turning to the design of AEs, we first address the bottleneck layer. We vary the number

of neurons in this layer, K1, in the same way as with PCA, ranging from 1 to 19. For

the encoder, we use a single hidden layer with 20 neurons to ensure it is wider than the

bottleneck. We experiment with four decoder architectures of increasing complexity. The

first architecture (AE1) has a single hidden layer in the decoder with two neurons, followed

by AE2 with four neurons, and AE3 with eight neurons in their respective hidden layers.

All these AEs have disjoint outputs. Additionally, we include a fourth architecture (AE4),

which has a fully connected decoder on the basis of AE3’s. We illustrate AE3’s architecture

in Figure 5.

When designing these architectures, we adhere to the principle of parsimony, experi-

menting with simple yet non-trivial structures to validate our theoretical results. Model

5According to Udell and Townsend (2019), a matrix with a small spectral norm can be effectively ap-
proximated by a low-rank matrix. For a matrix X ∈ Rm×n where m ≥ n and 0 < ϵ < 1, the approximation
error is bounded as:

inf
rank(Y )≤r

∥X − Y ∥∞ ≤ ϵ∥X∥2, with r = ⌈72 log(2n+ 1)/ϵ2⌉.

Additionally, Griebel and Harbrecht (2014) and Xu (2017) demonstrate that the matrix Xit := φ(Λi, F
⋆
t ) in

nonlinear models admits a low-rank approximation, where for any δ > 0,

inf
rank(Y )≤r

∥X − Y ∥∞ ≲ δβ , with r ≍ δ−K ,

where K is the dimension of F ⋆
t , and β is given by Assumption 2.
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Figure 5: Illustration of AE3’s Architecture

Note: This graph illustrates the architecture of AE3 used in our numerical analysis. The encoder has one

hidden layer with 20 neurons, while the decoder consists of multiple separate neural nets, each containing a

hidden layer with 8 neurons. We vary the number of neurons, K1, in the bottleneck layer.

complexity can be increased if needed—such as when training losses do not reach a suf-

ficiently low level compared to a benchmark method or architecture—to avoid potential

underfitting. In most cases we consider, the training loss does not reach zero, as our disjoint

output AEs have a limited number of parameters relative to the sample size, except for the

fully connected AE4 model and when T is small. Thus, most of our results do not fall within

the over-parametrized regime. We address the training details separately based on different

AE applications, starting with using AEs for extracting common components.

4.2 Finite-Sample Recovery of Common Components with Autoencoders

To train the aforementioned AEs in this scenario, we use stochastic gradient descent with

the Adam optimizer (Kingma and Ba, 2014) to minimize the loss defined in (4). The batch

size is fixed at 5 for T = 50 and 50 for T = 500, ensuring each epoch consists of ten gradient

descent updates. In simulations for AEs, the only parameter we tune is the learning rate in

the optimization algorithm, selected from {0.005, 0.01, 0.05, 0.1} using a training-validation

scheme, with results reported for each K1. To mitigate the effects of random initialization

during training, we report the average performance of an ensemble of 10 independently

trained models, following standard practices in the literature.

For each tuning parameter (e.g., learning rate), we train the AEs using the first 4/5 of
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the sample (training sample) and apply the inferred encoders and decoders to construct an

estimate of X⋆ in the remaining sample (validation sample). This approach allows us to

calculate the validation loss and determine the optimal tuning. When training, we apply

early stopping if the validation loss does not decrease for 50 consecutive epochs. Finally, we

refit the model using the entire sample with the selected tuning parameter.

We report the mean squared error (MSE) given by:

N−1T−1

T∑
t=1

N∑
i=1

(X̂it − φ⋆i (F
⋆
t ))

2,

with a variety of choices (N, T ) = (50, 500), (200, 500), (200, 50). The comparative perfor-

mance shown in Figure 6 reveals differences in how PCA and AEs respond to changes in

sample size and model complexity.

In the baseline linear case, PCA achieves optimal MSE when the number of factors is set

to five (the true value) and is clearly the best performer when the sample size N is larger

than T . In this linear setting, AE1 through AE3 exhibit similar performance. These AEs

tend to achieve lower MSEs than PCA when the number of factors is below five; however,

their performance, like that of PCA, begins to deteriorate as the number of factors increases

beyond five. This decline is due to the addition of extra factors, which introduces noise into

the estimation rather than improving accuracy.

AE4 follows a U-shaped pattern similar to the other AEs but demonstrates significantly

worse performance. Its greater complexity makes it more prone to overfitting, resulting in

higher MSEs compared to the simpler models. This result highlights the benefit of dis-

joint output architecture, which achieves a balanced trade-off between model flexibility and

estimation performance.

The results for all nonlinear DGPs reveal a similar pattern. As the number of factors

increases, PCA’s performance continues to improve, suggesting that nonlinearity compels

PCA to extract more linear factors to effectively approximate the model. In all cases, PCA

struggles to match the performance of the nonlinear methods, even with up to 20 factors in

the case where N = 200 and T = 500, while these nonlinear methods deliver superior results

with just five factors. When N is small relative to T , AE1 through AE3 perform comparably

and significantly outperform AE4, which quickly begins to overfit. Conversely, when N is

large relative to T , AE1 tends to dominate in terms of performance, while AE2 and AE3

become comparable to AE4, indicating that their relative advantage diminishes as the ratio

between sample size and dimensionality shifts.
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Figure 6: Mean Squared Error Comparison in Simulations

Note: This figure shows boxplots of the mean squared errors for each specified number of factors, comparing

five different methods applied to four models across various choices of N and T , based on 100 Monte Carlo

repetitions.
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In the supplementary appendix, we also compare AEs with Kernel PCA. The findings

reveal that while Kernel PCA introduces nonlinearity to its feature extraction process, it

still falls short of matching the performance of AEs. This performance gap is largely due

to the inherent limitations of Kernel PCA, which relies on pre-specified kernel functions

and lacks the adaptive, data-driven architecture of AEs. In contrast, AEs, with their deep

learning structures, dynamically learn representations that capture intricate relationships

within the data, enabling them to outperform Kernel PCA across various sample sizes and

model complexities.

4.3 Finite-Sample Matrix Completion with Autoencoders

Next, we examine the performance of missing data imputation using AEs, employing the

polynomial factor model as the DGP to generate data, with N = 50 and T = 500, as

motivated by our empirical application below.

To simulate the missing-at-random scenario, we generate a probability πi ∼ U(πmin, 1)
for each variable Xi, representing the likelihood of observing a value. We vary πmin with

values of 0.2, 0.4, 0.6, and 0.8. We train AE1 through AE3 using the observed data matrix

X̃, with K1 fixed at 1, 3, 5, 7, and 9, respectively. The training, validation, and refitting steps

follow the same procedure as described above.

Table 1 reports the MSEs for the imputed entries:

1

N

N∑
i=1

1

#{t : X̃i,t = 0}

∑
t∈{t:X̃i,t=0}

(
X̂it/π̂i −X⋆

it

)2
.

A few notable results emerge. As data availability increases (πmin becomes larger), the

performance of all methods improves. Overall, AE1–AE3 consistently outperform PCA

across all scenarios. While PCA benefits from additional factors to better approximate the

nonlinear structure, AE4’s performance deteriorates with more factors due to its excessive

complexity, leading to overfitting. In contrast, AE1–AE3 demonstrate robustness with re-

spect to the number of factors, often reaching optimal performance with the actual five

factors.

4.4 Finite-Sample Predictive Performance with Supervised Autoencoders

We conclude by evaluating the performance of SAEs, focusing on a prediction setting. The

simulation framework for structured matrix completion closely mirrors this scenario and is
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πi ∼ U(0.2, 1) πi ∼ U(0.4, 1)

K1 1 3 5 7 9 K1 1 3 5 7 9

PCA 0.865 0.827 0.807 0.796 0.802 PCA 0.852 0.794 0.756 0.726 0.712
AE1 0.793 0.684 0.661 0.661 0.672 AE1 0.763 0.625 0.585 0.579 0.585
AE2 0.771 0.645 0.635 0.651 0.676 AE2 0.738 0.574 0.544 0.556 0.577
AE3 0.755 0.642 0.649 0.683 0.719 AE3 0.721 0.558 0.548 0.576 0.614
AE4 0.731 0.743 0.864 0.914 0.934 AE4 0.696 0.651 0.795 0.863 0.897

πi ∼ U(0.6, 1) πi ∼ U(0.8, 1)

PCA 0.842 0.769 0.712 0.666 0.635 PCA 0.831 0.743 0.674 0.616 0.574
AE1 0.743 0.58 0.523 0.507 0.509 AE1 0.725 0.545 0.474 0.45 0.449
AE2 0.715 0.521 0.472 0.479 0.498 AE2 0.693 0.478 0.414 0.416 0.434
AE3 0.693 0.496 0.473 0.5 0.538 AE3 0.669 0.447 0.413 0.437 0.476
AE4 0.675 0.594 0.758 0.839 0.877 AE4 0.648 0.537 0.722 0.816 0.865

Table 1: Simulation Results for Matrix Completion

Note: This table reports the MSEs of imputed entries across various matrix completion algorithms, including

the benchmark PCA method and multiple AE architectures of increasing complexity. K1 corresponds to the

number of factors in PCA and the number of neurons in the bottleneck layers of the AEs. πi represents the

heterogeneous probabilities of non-missing data for each row ofX, drawn from different uniform distributions.

thus omitted.

In this supervised setting, we adopt a polynomial factor model as the DGP for Xit. Addi-

tionally, we simulate target variables Yit based on (6), where ϕ⋆i (x) also follows a polynomial

factor model but with a distinct set of randomly generated parameters (e.g., Λ1i and Λ2i).

We adjust C1 and C2 in the DGP to calibrate the signal-to-noise ratio for X and Y based

on empirical observations. The signal to noise ratio of X is set to 1, reflecting the fact that

the top five factors of book-to-market ratios explain approximately 50% of the variance.

For Y , the signal-to-noise is set to 1%, aligning with the empirical observation that the

out-of-sample R2s for predicting factors are lower than 1%.

We fix N = 50, while varying the dimension of Yit, M . The in-sample size is set at T =

200. As discussed earlier, a sparse encoder can enhance model’s out-of-sample performance.

Sparsity is introduced here via a pruning procedure. Specifically, we first train SAEs with

a fully connected encoder and then apply post-training pruning by setting weights below a

specified threshold to zero. The pruning threshold is determined by sorting all weights and

truncating those below a specified percentile, referred to as the pruning ratio. We vary the

pruning ratio from 0% to 95% in increments of 5%. Since pruning is applied after training,
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adjusting the pruning ratio is computationally efficient.6 Consequently, the pruning ratio

and learning rate are selected jointly during the validation step.

After training and validation, we evaluate the selected model’s out-of-sample performance

using a separate testing sample of 100 observations. For each target variable, we can calculate

its out-of-sample R2 against its in-sample mean, and then report the average over all such

R2s in Table 2. For comparison, we include principal component regression (PCR) as a linear

benchmark. In PCR, each variable Yi is regressed on the principal components of Xit using

the entire in-sample dataset. Predictions are then made out-of-sample using the in-sample

estimates of principal component weights and regression coefficients.

The results highlight the advantages of our SAE models compared to PCR, which con-

sistently yield negative out-of-sample R2s values regardless of the number of factors. This

underperformance can be attributed to PCR’s lack of supervision when recovering factors

and its reliance on linear approximations, which prove inadequate for capturing the nonlinear

relationships needed to predict the target variables.

SAE4 also struggles to achieve positive R2 values due to its tendency to overfit in out-of-

sample settings. In contrast, SAE1 through SAE3 deliver positive R2 values, demonstrating

their ability to extract nonlinear factors effectively while maintaining sufficient complexity

control to avoid overfitting.

AsM (the dimension of Yit) increases, prediction becomes increasingly important, leading

to improved predictive performance. While the number of neurons in the decoder layer

grows as M increases, the total number of weights per target remains fixed for SAE1-SAE3.

However, for SAE4, the total number of weights per target increases, contributing to its

progressively worse performance.

Developing better architectures, optimization algorithms, or efficient parameter-tuning

schemes are important and ongoing research areas in machine learning. Nevertheless, our

primary focus here is not on finding the optimal model, but on validating our theoretical

insights and identifying a useful model for empirical analysis.

5 Empirical Applications in Economics

In this section, we discuss three separate applications that illustrate the use of AEs and

SAEs with economic datasets.

6For alternative approaches, see LeCun et al. (1989), Hassibi and Stork (1992), and Frankle and Carbin
(2018).
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M = 25 M = 50

K1 1 3 5 7 9 K1 1 3 5 7 9

PCR -0.323 -0.922 -1.731 -2.45 -3.38 PCR -0.297 -1.049 -1.869 -2.692 -3.585
SAE1 0.248 0.267 0.28 0.266 0.277 SAE1 0.309 0.35 0.341 0.348 0.347
SAE2 0.245 0.258 0.257 0.261 0.271 SAE2 0.302 0.328 0.341 0.342 0.354
SAE3 0.176 0.232 0.26 0.246 0.249 SAE3 0.264 0.316 0.337 0.347 0.345
SAE4 -0.146 -0.039 -0.038 0.021 0.025 SAE4 -0.087 -0.048 -0.032 0.009 0.025

M = 100 M = 200

K1 1 3 5 7 9 K1 1 3 5 7 9
PCR -0.327 -1.087 -1.924 -2.762 -3.674 PCR -0.31 -1.098 -1.885 -2.739 -3.561
SAE1 0.356 0.381 0.387 0.383 0.386 SAE1 0.387 0.392 0.395 0.395 0.395
SAE2 0.343 0.375 0.382 0.386 0.382 SAE2 0.374 0.39 0.389 0.392 0.393
SAE3 0.315 0.368 0.378 0.379 0.381 SAE3 0.339 0.384 0.388 0.392 0.392
SAE4 -0.08 -0.052 -0.021 -0.031 0.005 SAE4 -0.091 -0.051 -0.042 -0.038 -0.012

Table 2: Simulation Results for Supervised Autoencoders

Note: This table reports the out-of-sample R2 of predicted values across various predictive methods, including

the benchmark Principal Component Regression (PCR) method and multiple SAE architectures of increasing

complexity. K1 corresponds to the number of factors in PCA and the number of neurons in the bottleneck

layers of the SAEs. The dimension of Y , M , is varied while the dimension of X is fixed at N = 50. The

sample size is fixed at T = 200.

5.1 Macroeconomic Forecasting

Our initial exercise aims to predict key monthly macroeconomic indicators, including indus-

trial production growth, inflation, changes in the unemployment rate, and non-farm payroll

growth. Our approach builds on the framework introduced by Stock and Watson (2002),

but rather than utilizing a linear factor model, we incorporate nonlinear factors through the

application of AEs.

For this study, we use the FRED-MD dataset, as compiled by McCracken and Ng (2016).

This dataset includes a comprehensive range of economic categories such as output and

income, labor market, consumption, orders and inventories, money and credit, interest rates

and exchange rates, prices, and the stock market. It offers 119 potential predictors, covering

the period from February 1960 to December 2019.7

We approach the task of prediction as one of missing data imputation. Let Xt ∈ R119 de-

7Following the procedure outlined by McCracken and Ng (2016), we preprocess the data by applying
necessary transformations to the variables. We also exclude variables that are missing in earlier years or are
unavailable without a long lag, ensuring the robustness and integrity of our results. We select this publicly
accessible and widely used dataset to facilitate comparability with other studies in the literature.
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Industry Production Inflation

K1 1 2 3 4 5 K1 1 2 3 4 5

PCA 9.2 7.8 9.3 9.6 7.0 PCA 0.0 -1.3 -6.0 -6.3 -6.7
AE1 10.1 10.4 11.7 13.8 13.3 AE1 -0.2 -0.7 -1.1 1.1 0.3
AE2 8.7 11.6 11.4 15.0 15.7 AE2 -0.8 -3.0 -1.0 -1.2 0.9
AE3 7.2 6.5 12.6 13.6 13.4 AE3 -1.0 -2.0 -2.6 -1.0 0.5

Unemployment Rate Nonfarm Payroll

PCA 13.0 11.6 14.7 13.1 12.2 PCA 1.1 2.5 1.0 3.5 -5.6
AE1 16.8 19.1 20.2 19.1 17.0 AE1 -1.4 2.2 6.7 4.3 0.5
AE2 14.1 17.6 17.7 19.3 17.6 AE2 -5.4 0.5 1.5 2.9 1.7
AE3 16.8 16.9 14.6 15.7 14.4 AE3 -5.5 -8.6 -1.6 -10.0 -8.2

Table 3: Out-of-sample R2s

Note: This table reports the out-of-sample R2 values in percentages for four different target variables,

comparing PCA and various AE architectures across different factor counts. Bolded values indicate the

best-performing model for each case. The architectures of these AEs match those used in the simulations.

note the predictor variables, while Yt+1 ∈ R4 represent the target variables for the subsequent

month. Suppose we observe (Xt, Yt+1) for t = 1, . . . , T − 1, in addition to XT . To predict

YT+1, we construct an N ×T matrix, where the t-th column corresponds to (Xt, Yt+1)
⊤. For

the last column, the final four entries, which represent YT+1, are treated as missing. We then

employ AEs and PCA to impute the missing values.

We begin by training these models on data from February 1960 to January 1990 (T =

360), after which we evaluate their performance by comparing the imputed values to the

true observed values. This evaluation process is iterated monthly over a 30-year period, with

each iteration expanding the training set by one month and shifting the evaluation window

forward accordingly. For benchmarking, we use an Autoregressive (AR(1)) model as in Stock

and Watson (2002), fitted with an expanding window for predictions. The out-of-sample R2

values, relative to the output from the AR(1) model’s output, are reported in Table 3.

The findings in Table 3 reveal that AE architectures generally outperform PCA in pre-

dicting key macroeconomic indicators, particularly as the number of factors increases. For

industrial production, AE models show a clear advantage over PCA, with AE2 achieving the

highest out-of-sample R2 (15.7%) at K1 = 5, suggesting that nonlinear factor structures sig-

nificantly enhance predictive accuracy. Inflation is the most challenging to predict—-PCA’s

performance is consistently worse than the benchmark, with AE1 achieving the best R2 of

1.1% at K1 = 4. For the unemployment rate, AEs consistently outperform PCA, with AE1

yielding the highest R2 values (20.2%) at K1 = 3. In predicting nonfarm payroll growth,
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PCA performs well at lower factor counts, but AE1 becomes superior as factor count in-

creases, reaching a peak R2 of 6.7% at K1 = 3. Overall, these results demonstrate that AEs,

particularly at higher factor counts, offer substantial predictive improvements over PCA,

highlighting the value of nonlinear modeling in forecasting macroeconomic variables.

5.2 Predicting the Cross-Section of Factor Returns

Our second exercise examines an asset pricing application centered on factor timing. Over the

past several decades, a significant body of research in asset pricing has focused on uncovering

and understanding the factors that explain the cross-sectional variation in expected returns.

This research has fueled the widespread adoption of factor-based investing, where portfolios

are allocated based on these systematic drivers of returns. Just as aggregate market returns

have been found to exhibit predictable patterns, the returns of individual factors may also

be predictable, presenting investment opportunities for dynamically adjusting positions on

different factors based on their expected performance.

Extensive research has explored the predictability of individual factors, such as value

(Cohen et al. (2003)) and momentum (Cooper et al. (2004); Daniel and Moskowitz (2016)),

as well as the simultaneous prediction of multiple factors (Stambaugh et al. (2012); Akbas

et al. (2015)). For instance, Arnott et al. (2023) investigate factor momentum and demon-

strate that the past returns of factors can predict their future returns in the cross-section.

Specifically, they show that a long-short portfolio—long on factors with above-median re-

turns in the previous month and short on those with below-median returns—yields significant

abnormal returns.

Building on this literature, Haddad et al. (2020) examine the predictability of the five

principal components of factors, i.e., factor portfolios, using portfolio-level book-to-market

(BM) ratios. These ratios are calculated by aggregating individual factors’ BM ratios with

portfolio weights derived from the eigenvectors of the returns covariance matrix. The BM

ratio for each factor is, in turn, calculated by weighting the individual equities’ BM ratios.

Ultimately, predictions of principal components then translate into predictions of factors

using these eigenvectors as weights.

In contrast to this multi-step procedure, our approach seeks to directly predict the cross-

section of factor returns using each factor’s book-to-market ratio, alongside additional char-

acteristics such as momentum measures derived from factor returns over varying horizons.

Our approach centers on the use of SAEs examined in simulations. The SAE architecture

enables the extraction of nonlinear, low-dimensional components from these characteristics
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of all factors (Xi,t), while simultaneously learning to predict the cross-sectional of factor

returns (yi,t+1) for the next period.

Our analysis uses the extended monthly dataset from Haddad et al. (2020), accessed via

Serhiy Kozak’s website, spanning January 1974 to December 2019. This dataset includes 50

long-short, characteristic-sorted decile portfolios, along with the BM ratios for each factor.

In addition to BM ratios, we calculate trailing 1-month (mom1), 6-month (mom6), and

12-month (mom12) returns as alternative predictors. The inclusion of mom12 requires the

sample period to begin in 1975.

To train the SAE, we adopt an expanding window approach. Specifically, the first 15

years of data serve as the training set, while the following 5 years form the validation set,

used for selecting tuning parameters, including the learning rate and pruning ratio.8 We do

not tune the number of factors but report results for each specified number. Performance is

then evaluated in the subsequent year. This procedure is repeated 25 times, with the training

set expanding by one year and the validation set shifting accordingly at each iteration. For

comparison, we implement the PCA-based prediction procedure outlined in Haddad et al.

(2020). Since PCA involves one tuning parameter—the number of factors—we do not tune

it, instead combining the training and validation sets to run PCA.

Table 4 reports the average out-of-sample R2 of predicted factor returns, benchmarked

against the factor’s average return over each expanding window. Additionally, we construct

a long-short portfolio by taking long positions in the top 10 (20%) factors and short positions

in the bottom 10 factors based on the predicted values.

For BM, the maximum R2 achieved using the PCA-based approach is 0.599%, attained

with 4 PCs, which translates to an annualized Sharpe ratio of 0.452. Using MOM1 as the

input for PCA yields slightly lower positive R2 values, but achieves a higher Sharpe ratio of

approximately 0.654. However, the performance of PCA with MOM6 and MOM12 inputs

is underwhelming, delivering negative out-of-sample R2 values and low Sharpe ratios—less

than 0.23 for MOM6 and 0.357 for MOM12. SAEs outperform PCA in nearly all comparable

cases, often by a substantial margin in terms of out-of-sample R2 values. For instance, the

investment strategy using MOM1 as input achieves a Sharpe ratio of 1.01 with the SAE3

model and 4 factors. Similarly, for BM, the SAE3 model achieves a Sharpe ratio of 0.675.

When MOM6 and MOM12 are used as inputs, SAE models reach Sharpe ratios of 0.759

and 0.834, respectively. The strong positive predictability associated with MOM1 confirms

8Empirically, our learning rate varies over the set {0.0005, 0.001, 0.005, 0.01}, and the pruning ratio
ranges from 0.05 to 0.95 in increments of 0.05.
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the evidence of factor momentum, particularly evident in returns sorted by the short-term

factor returns, aligning with the findings of Arnott et al. (2023).

5.3 Causal Analysis with Corrupted Data

In the final exercise, we revisit the study by Agarwal et al. (2021) on casual analysis with

corrupted data, focusing on a specific type of noise introduced for differential privacy, rep-

resented by Laplacian noise deliberately added to protect respondent privacy.

The economic context involves recovering the effect of import competition from China

on U.S. labor markets, as studied in the influential work by Autor et al. (2013). Their panel

dataset is organized at the commuting zone (CZ) level, encompassing 722 CZs across two

time periods: the 1990s and 2000s. Each CZ is represented by a vector of 30 covariates,

including variables from the authors’ preferred specification as well as auxiliary variables

detailed in their appendix.9

The dataset features repeated measurements of underlying economic factors, exhibiting

a strong factor structure. Table 5 highlights this low-dimensional structure by comparing

the variance explained by AEs and PCA. AEs consistently recover more variance than PCA

for a given number of factors. Notably, while PCA requires over 13 factors to achieve 90%

explanatory power, AEs need only 5–7 components.

Following Agarwal et al. (2021), we add synthetic Laplacian noise to the original dataset,

referred to as the clean data, and compare the performance of PCA and AEs in denoising the

corrupted inputs. The denoised outputs are then fed into the same causal analysis framework

to evaluate the effects of these data-cleaning methods.

Specifically, we introduce noise into the original 1990s dataset, X⋆ ∈ R30×722, to obtain

the corrupted data X, with SNRs set at 0.5, 1, and 2. PCA and AEs are applied to X and

the MSE between the original data X⋆ and the reconstructed output X̂ is computed.

Figure 7 presents the average reconstruction error across all variables. Consistent with our

simulation studies, AEs demonstrate superior performance in recovering the underlying data,

achieving significantly smaller MSEs compared to PCA. As the SNR decreases, performance

9These variables are drawn from Column 6 in Table 3 and Appendix Table 2 of Autor et al. (2013).
They include percentages of employment in manufacturing, college-educated population, and foreign-born
population; percentages of employment among women and in routine occupations; average offshorability
index of occupations; Census division dummies; and percentages of the working-age population: employed in
manufacturing, employed in non-manufacturing, unemployed, not in the labor force, and receiving disability
benefits. Additional variables include average log weekly wages (manufacturing and non-manufacturing),
average benefits per capita (individual transfers, retirement, disability, medical, federal income assistance,
unemployment, and TAA), and average household income per working-age adult (total and wage/salary).
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Panel A: Out-of-sample R2s

BM MOM1

K1 1 2 3 4 5 K1 1 2 3 4 5

PCA -0.34 0.063 0.187 0.599 0.32 PCA 0.099 0.444 0.145 0.458 0.561
SAE1 0.408 0.473 0.361 0.47 0.645 SAE1 0.492 0.528 0.444 0.385 0.696
SAE2 0.429 0.548 0.54 0.638 0.563 SAE2 0.238 0.355 0.506 0.569 0.572
SAE3 0.53 0.473 0.54 0.695 0.54 SAE3 0.222 0.208 0.41 0.774 0.666

MOM6 MOM12

PCA -0.009 -0.196 -0.235 -0.101 -0.031 PCA -0.086 -0.415 -0.383 -0.011 -0.0
SAE1 0.457 0.556 0.595 0.653 0.612 SAE1 0.404 0.448 0.548 0.526 0.666
SAE2 0.438 0.316 0.637 0.605 0.637 SAE2 0.377 0.44 0.532 0.535 0.621
SAE3 0.335 0.204 0.605 0.559 0.662 SAE3 0.503 0.556 0.492 0.569 0.505

Panel B: Out-of-sample Sharpe Ratios

BM MOM1

PCA 0.158 0.351 0.33 0.452 0.425 PCA 0.133 0.529 0.475 0.654 0.597
SAE1 0.66 0.7 0.673 0.486 0.663 SAE1 0.662 0.861 0.676 0.806 0.856
SAE2 0.633 0.393 0.507 0.52 0.484 SAE2 0.512 0.652 0.704 0.748 0.802
SAE3 0.558 0.586 0.46 0.675 0.564 SAE3 0.744 0.662 0.809 1.007 0.779

MOM6 MOM12

PCA -0.062 0.078 0.094 0.226 0.211 PCA 0.155 0.12 0.065 0.357 0.298
SAE1 0.757 0.759 0.636 0.572 0.551 SAE1 0.561 0.663 0.579 0.687 0.661
SAE2 0.612 0.515 0.525 0.507 0.706 SAE2 0.645 0.76 0.831 0.396 0.534
SAE3 0.41 0.529 0.611 0.673 0.519 SAE3 0.834 0.802 0.751 0.658 0.373

Table 4: Out-of-sample R2s and Annualized Sharpe Ratio

Note: The table summarizes the empirical performance of predicting the cross-section of expected factor

returns. The upper panel presents out-of-sample R2 values (in percentages) for SAEs and PCA across

different numbers of factors, using BM, MOM1, MOM6, and MOM12 as predictors. The lower panel reports

Sharpe ratios for long-short portfolios constructed from sorted next-month predictions, rebalanced monthly.

K1 1 3 5 7 9 11 13 15 17 19

PCA 24.1 50.9 64.9 74.1 81.7 87.3 90.8 93.8 96.3 97.7
AE1 38.6 76.7 87.4 92.3 94.7 96.1 97.2 98.2 98.9 98.9
AE2 44.5 82.0 91.1 93.8 95.8 97.1 98.1 98.4 99.1 99.2
AE3 51.2 86.2 92.4 95.3 96.7 97.6 98.0 98.7 99.2 99.3

Table 5: Cumulative Percentage of Variance Explained by Extracted Factors

Note: This table reports the cumulative percentage of variance explained by an incremental number of

factors for PCA and AEs, respectively.
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deteriorates, resulting in larger reconstruction errors. We next explore how these errors affect

the final causal analysis. For consistency with Autor et al. (2013), we use their specified
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Figure 7: Effectiveness in Eliminating Synthetic Measurement Error

Note: This figure compares the MSEs for AEs and PCA across different numbers of factors in eliminating

synthetic errors from the covariates.

variables for the two-stage least squares (TSLS) estimation, although the data-cleaning step

benefits from the inclusion of auxiliary variables, which enhance the recovery of the factor

structure.

For consistency with Autor et al. (2013), we use their specified variables for the two-stage

least squares (TSLS) estimation, while the data-cleaning step benefits from the inclusion of

auxiliary variables to enhance the recovery of the factor structure. We repeat the denoising

process 100 times and present the distribution of TSLS estimates based on AEs and PCA,

with the number of factors fixed at K1 = 5 in Figure 8. For comparison, we also compute

the causal effects directly using the noisy data without any cleaning. When applying TSLS

to the outputs of AEs and PCA, the estimated causal effects are close to the value reported

in the original paper (−0.596 ± 1.96 · 0.099): specifically, -0.548 for AE1, -0.589 for AE2,

-0.625 for AE3, and -0.658 for PCA. Nevertheless, as shown in Figure 8, the results from

AEs yield more accurate estimates of the causal effect, as they are closer to the red dashed

line, which represents the causal effect derived from clean data.

6 Conclusion

This paper establishes a theoretical foundation for a nonparametric unsupervised learning

problem—the application of deep AEs within nonlinear factor models—demonstrating their

effectiveness in extracting latent common components from high-dimensional inputs. By

extending this framework to include SAEs, we pave the way for broader and more versatile
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Figure 8: Effect of Noise Elimination on Causal Analysis Outcomes

Note: This figure presents boxplots of the TSLS estimates based on 100 repeated experiments with synthetic

noise added to the covariates. The ”Noisy” case represents the estimates obtained directly from the corrupted

data, while the remaining boxplots correspond to estimates after applying respective data-cleaning methods

using PCA and AEs.

applications in economics. These models equip researchers and practitioners with robust

tools to address the complexities of analyzing large-scale and intricate datasets, unlocking

new opportunities for both predictive accuracy and deeper explanatory insights.

While this work primarily focuses on estimation and prediction using a specific class of

AEs and SAEs, it opens several promising directions for future research. A natural extension

involves formal inference, particularly in the context of causal analysis, to better quantify

uncertainty in causal effects. Expanding the framework to include more general AE struc-

tures beyond the disjoint output class could enhance their flexibility and applicability across

diverse settings. Furthermore, developing principled methodologies for model selection, ar-

chitecture optimization, and regularization strategies would improve both interpretability

and computational efficiency. Finally, pursuing theoretical analyses to understand the in-

tegration of AEs with other machine learning frameworks, such as generative models or

variational inference, could unlock opportunities for novel and distinct economic applica-

tions.
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